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Cylindrical Substrate Microstrip
Line Characterization

NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE, AND AKIFUMI NAKATANI, STUDENT MEMBER, [EEE

Abstract —In this article, quasi-static and dynamic solutions are derived
for microstrip transmission lines on circularly symmetric cylindrical sub-
strates. Novel numerical techniques have evolved which lead to very
efficient algorithms. The model is applicable to substrates of arbitrary
thickness and cylinder size. Furthermore, it has been checked against a
variety of limiting cases, including microstrip on a flat substrate, and it has
been found to provide results with excellent accuracy. The analytical
extraction of the quasi-static behavior from the dynamic Green’s function
introduces considerable simplicity in developing the algorithm.

I. INTRODUCTION

HE DESIGN OF microstrip antennas and microstrip

antenna arrays on cylindrically shaped substrates
necessitates the development of highly accurate design
procedures not only for the microstrip antennas, but also
for the microstrip circuitry which forms the antenna or
array excitation network. This article presents the develop-
ment of a dynamic model for a microstrip transmission
line printed on a circularly symmetric cylindrical substrate.
A quasi-static model has also been derived so as to provide
an investigation of the computational accuracy of the
dynamic Green’s function. It is determined that the al-
gorithm provides excellent accuracy and that it agrees with
all limiting cases, including the configuration of microstrip
on flat substrates. Quasi-static models for microstrip on
cylindrical substrates have been obtained previously with
good accuracy by conformal mapping [1], [2] and by
numerical solution to Laplace’s equation [3]. These models
however are useful for the computation of the static
parameters of the microstrip line, such as capacitance, and
they should not be used for the evaluation of the
frequency-dependent properties of such a complicated
waveguiding structure on a cylindrical substrate. The
quasi-static and dynamic solutions developed in this article
rely on the development of the Green’s function and the
solution of the pertinent integral equation by numerical
techniques such as the method of moments {4]-[7].

The most significant issue in the attempt to characterize
the microstrip transmission line on a cylindrical substrate
is the development of an accurate numerical procedure for
the computation of the pertinent Green’s function. Specifi-
cally, a bfeakthrough has been needed for some time now,
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which will lead to the calculation of the near fields gener-
ated by a printed current line source (two-dimensional
problem) or by a printed electric dipole (three-dimensional
problem) with the desired accuracy. This was achieved
recently for microstrip dipole antennas printed on a cylin-
drical substrate [8], [9]. There, a highly efficient algorithm
was developed which provides convergent numerical
evaluation of the pertinent Green’s function with the de-
sired accuracy. This algorithm has been modified to ad-
dress the two-dimensional (2-D) waveguiding problem of
the infinite microstrip line on a cylindrical substrate, i.c.,
the principal problem of concern in this article. To this
end, the Green’s function is derived for the quasi-static as
well as for the dynamic model, and the similarity of the
functional behavior of both Green’s functions is discussed
in detail. The algorithm is based on extracting the domi-
nant behavior of the Green’s function and on the judicious
use of recurrence relations and continued fraction repre-
sentations of the Bessel-type functions involved in the
problem. This algorithm is general so that it provides
highly accurate solutions for all conceivable limiting cases,
such as the static problem, arbitrarily thin or thick sub-
strate, and arbitrary cylinder size. Furthermore, it has been
checked against the planar microstrip configuration, two-
wire line, a wire above a planar conductor, and the paral-
lel-plate line, providing excellent agreement with each
limiting case.

I1. THE QUASI-STATIC PROBLEM FORMULATION

The geometry of interest is shown in Fig. 1, which
depicts a cylindrical substrate with inner and outer radii p,
and p,, respectively, and relative dielectric constant ,.
The width of the infinitely long microstrip line is denoted
as w=p,8,, where §, is the angular extent of the strip
defined in the figure. The Green’s function to the static
problem is obtained by considering as the source of poten-
tial an infinite line of unit charge at p = p, and ¢ = ¢’. The
Poisson equation

1 0 d 1 92
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Fig. 1.

Cylindrical substrate microstrip configuration. R = p, /p,.

is solved by substituting the Fourier series representation
+ o0
gle,¢)= 2 g(p.m)exp(jmo) (2)
m=— o0

in (1). The boundary conditions are written in the spectral
domain as

g(l)(p2am)=g(0)(pzam) (3)
and
d exp (— jm¢’)

d—p{g(o)(m m)—€,8V(p,m)}, ., =—

27p,

(4)

The Green’s function is readily obtained as

1
g(p,,9) = :IOg(l/R)

27e

to cos [m(¢p— ¢')]
+2mZ=1 m[1+ ¢, coth(mlog(1/R))]

(5)

where R = p; /p,. The microstrip potential is related to the
charge density distribution per unit length p,(¢) through
the integral equation

Vo=r(8)= [ slo=#)n(e)de. (6)

The Galerkin method is applied to solve the integral
equation for the unknown charge density by expressing
p,(9’) as a series of pulse basis functions with unknown
coefficients a,. The integral equation is therefore reduced
to a system of algebraic equations in the form

v1=1[z,]la].

where V, =V, =1, and the matrix elements Z, , are given

1

i,j=1,2,---,N (7)

TABLE1
CLAUSEN’s COEFFICIENTS OF EQUATION (13)

n [N n Cn

1 0.75 S 1.4822216 (-9

2 3.4722222 (-3) 6 1.5815725 (-11)
3 1.1574074 (-4) 7 24195010 (-13)
4 9.8418997 (-8) 8 3.9828978 (-15)

by
_ log(1/R) 4, 4w

+ —_
J 27e e, mheq(e, +1)  wlhey 2, m®

1 1
{ 1+¢,coth(mlog(1/R)) (1+¢,) }
mA

T)cos[m(q&,—qu)]. (8)

In (8) the parameter A denotes the pulse expansion func-
tion width, while A, | is the sum
1 mA
3 —351n2(7)cos[m(¢,—¢j)]. (9)

m=1M
The quantity A,  may be cast into the following represen-
tation to facilitate computation:

-sin?

A =

iy

1 1
A =—[YI—E(Y2+Y3) (10)

1,/ 2
where Y, (i=1,2,3) is defined as
to cos(mX,)

Y= —s5—

m=1 m

(11)
with
Xi=¢,—¢, X=X +A and X=X —A (12)

The form Y, may be computed by using Clausen’s integral
and related summation form [10], [11], i.e.,

Y(X) =1.2020569+0.5X%log( X)~ Y. ¢, X?* (13)
n=1
with ¢, obtaining values such as those shown in Table I for
the first eight coefficients.

III. DISPERSIVE MODEL

The dispersive model for the microstrip line shown in
Fig. 1 is obtained by using the spectral method to solve
Maxwell’s equations in the cylindrical coordinate system.
The electromagnetic field components are expressed in the
spectral domain as

.k, 9E.  map,

E = + H, 14
0 ,YZ ap ,sz z ( )
. mk, . jop, 0H,
E¢ =T T2 L ’ ’:0 (15)
YP Y* dp
~ meeg, . Jjk, 9H,
H=-—"F += (16)
YP Y° dp
- jweg, IE,  mk.
I S bt 17)
Y dp  ¥Pp
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where E, and H, satisfy the wave equation

14 d . m? 5 ()
;d—p pgl; + ‘Y(i)__pT i =0, (18)

Here ¥ represents E® or H® and y2=k2— k2, with
i =1,0 denoting the substrate or free-space region, respec-
tively. The boundary conditions at p = p, yield

E‘vz(l) — E"‘Z(O)

(19)

and

px(HO-HO) =1, (20)
where J is the Fourier transform of J qu + 2J,. The
unknown current density J may be obtamed by solvmg the

system

_[ew a2l(4

e J.
for J and J, on the strip. The dynamic Green’s function
components G(O) G, G, and G are given in the
Appendix, for convemence. Since we assume the strip to
be narrow (i.e., w < A,), J, may be neglected [7]. Galer-
kin’s method is used to yield results for the effective
dielectric constant €. = (k,/ky)* The line characteristic
impedance is calculatéd by adopting the definition Z,=
Vo /1,, where I, is the total longitudinal current on the
strip and ¥, is the potential difference of the strip to
ground. A stationary expression may be derived for Z; as
follows. The electric field component E, is given by

-+ o0

EP(p,¢) = ¥ EPexp(jms)

—

7 (0)
Eg
E ©

o)
Gy,

GO (21)

(22)

where
ED=GD(p,m)J,(m).

Since the potential on the strip is given by

V(e)= ["E®(0,)dp
P2

(23)

(24)

if we define

V= [ 60 (0. m) dp

%]

and
V)= T 7L men(me)  (26)

then application of Galerkin’s method to (26) will result in

(27)

Therefore Z; is

-SRI )

which is the stationary result. The expression for V,

m

is

(25)

found as
s €ett Yol Ei m? kz(f “1) (29)
" v D, | D, ¥i(vp)
where H,, is given by
b,
H, = ? ___(_ﬂ dp (30)

o2 PR, (1102)
with parameters defined in the Appendix:

b, (vip) = N (v101) 1, (710) = T (110) N, (v10) (31)

and 7 represents the free-space wave impedance. It is
interesting to note that at the quasi-static limit this expres-
sion reduces to

Yearr

27e,

Zy,=

+ o0 ]_(WZ)
-—{log(l/R)*'zfrmz::1 m[1+e¢,coth(mlog(1/R))] }(32)

where

(exp(jme), J,(¢),exp(— jmg’))
(J,($).1) (32

with ( ) denoting inner product. If pulse basis functions
are used as expansion functions with width A, then

N
f(m)=sinc(—2~)sinc( 24’) R
' X a,
n=1

where sinc(x) = sin(x)/x, 8, is the width of the line, and
a, are the unknown coefficients in the current expansion.
When the microstrip line is extended so that its width
8 =2, the coaxial line is obtained. For this case, €, =

€,,sinc(md, /2) =0; ie., I I(m) =0 and the expression for
the characteristic impedance reduces to the first term of
(32), i.e.,

I(m) =

(34)

(35)

IV. ALGORITHM DESCRIPTION

An efficient algorithm can be developed by considering
an approach which bypasses the need to compute directly
Bessel-type functions for any order and /or argument. This
is achieved by computing equations (A11) and (A12) in the
Appendix. It is useful to note that these equations yield,
when properly combined, the term coth[mlog(l/R)] in
the quasi-static solution. Furthermore, it should be ob-
served that the wave equation reduces to Laplace’s equa-
tion when the argument of the Bessel-type functions in-
volved is small or the order is large. The development of
the algorithm becomes clearer by considering, as an exam-
ple. the manipulations introduced for the computation of
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Y. The expression for Y, may be written, by using the
Wronskian and recursive relations, as

YV =73 — AY,D (36)
where
m S 1(7192)
A (37)
11P2 Jm(‘)’lpz)
and
AYD = Jm(7191)/-]m(7192)

7v102 N, (vie), (1102) = N (vi02) T (v101)

(38)

The asymptotic expression of (38) is derived as

(39)
where the combination of the first term in Y, and (39)
yields the corresponding quasi-static behavior of the func-
tion. Now, the dominant and perturbation terms are de-

fined as

m I 1(Y1P2)
,511)= coth|{mlog(1/R ]-+—— (40)
Y 102 [ ( ) Jm(Ylpz)
and
1
;Jm(‘Ylpl)/Jm(‘YIPZ)

(1) —

nt

1102 | N(1101) 10 (1202) — N (1102) 7, (7101)

(41)

C1-R

The dominant terms are computed by using the continued
fraction method, where only the ratio of Bessel’s functions
is required. The computation of the perturbation term is
performed by forming a new recurrence relation in the
following manner; when the ratios p,, and g, are defined
as

Jm +1 ( Z )
=— 42
pm Jm ( z ) ( a)
and
Nm +1 ( z )
= — 42b
In= N () (42b)
then the recurrence relation is obtained as
o, = Il ou(B) -, (43)
Pn(4)q,,(B)
with
o N(A)d(B) »

O Jy(A)No(B)

and

pm(B)=q,(B) 2 m

A 1 = —
ym Gr(nl)_l B 1_R—-2m

(45)

Now the term YV is computed by using (40) and (45) as
Y= yug— Ay (46)

where 4=1v,0, and B=1v,p,. Here forward recurrence
applies to g,,(z) and G while the continued fraction
relation applies to the Bessel function of the first kind. The
benefits of using these relations are: (a) one can determine
the accuracy for arbitrary order and argument (including
complex argument) explicitly, (b) subroutines for comput-
ing these functions can be coded very efficiently, and (c)
one needs to compute only zero-order Bessel functions to
calculate G§" or a simple program may be written sep-
arately to achieve the same goal. The term defined in (45)
yields faster convergence; i.e., the quantities are much
smaller than the dominant term defined in (40).

V. NUMERICAL RESULTS

A variety of limiting cases is presented in this section to
demonstrate the accuracy and versatility of the developed
analysis and algorithm. The Galerkin procedure is applied
for the quasi-static as well as dynamic solutions, with pulse
basis functions being chosen as both expansion and testing
functions. The number of basis functions is chosen as 40
for half of the strip width and this leads to better than 0.5
percent convergence accuracy for both the quasi-static and
dynamic solutions.

A. Quasi-Static Simulation

The first three examples demonstrate how the cylindrical
solutions approach in the limit the two-wire transmission
line, the wire above a ground plane, and the parallel-plate
transmission line solutions. The characteristic impedance
for the quasi-static solution is obtained by using (7) or by
using the current distribution when ¢, approaches unity in
the dynamic solution.

1) Two-Wire Transmission Line: If ¢,=1, R<1, w/H
<1, and p, > p,. the geometry approaches that of the
two-wire transmission line. The characteristic impedance
of such a line is given by Z, =120cosh™(D/d), where D
is the distance between the wires and d is the diameter of
the wire. At the limit Z;, -120In(1/R) when R <1 and
w/H <1 with w=4p,. Table 11 shows the manner in
which the microstrip above a cylinder approaches the
two-wire transmission line.

2) Strip Above a Planar Geometry: If €, =1, w/H <1,
and R approaches unity, then the solution tends to that of
the strip above a ground plane. The characteristic imped-
ance for this geometry is given by the expression

ZO=6010g{M}. (47)

w
When w/H =10"%, this formula yields Z, = 677.4 ©. The
algorithm approaches the theoretical value, as shown in
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TABLE II
TwO-WIRE SIMULATION
R Z, (Two wire ) 7., (This algorithm)
0.1 276.3 282.1
0.01 552.6 553.0
0.001 828.9 828.6
0.0001 1105.2 1105.2
TABLE III
WIRE ABOVE A GROUND PLANE
R Z, (Ohms) % Diff.
0.7 689.2 1.74
0.9 680.8 0.50
0.99 677.8 0.06
0.995 677.4 0.00
TABLE IV
PARALLEL-PLATE SIMULATION
W/H Z, (Formula ) Z, (Model)
50 7.540 7.053
100 3.770 3637
200 1.885 1.850
400 0.942 0.934
600 0.628 0.625
Coff z_(0hm)
8.0 70
R = 0.8 60
0.95 "
/”’95:’
7.0 | o L 50
R N
~ Constant
= 40
e
6.0 // 30
Characteristic 20
0.80 Impedance
5.0 1 10
1}
0.0 1.0 2.0 3.0

w/H = 84y /(py ~ 0}

Fig. 2. Low-frequency properties (¢,=9.6). Planar geometry. R=1.0 [6].

Table III. The results obtained here reveal how the curved
surface affects the circuit parameters. When the circuit
dimension is small compared to the cylinder diameter, it
essentially simulates the planar geometry. This means that
the local field, defined as the field in the vicinity of the
circuit, dominates the transmission line properties inde-
pendent of frequency.

3) Parallel-Plate Line: When w/H >1, the geometry
approaches a parallel-plate line. For this type of line
Zy,=120 = (H/w). A comparison of the two cases is
shown in Table IV for R =0.995. As the table indicates,
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TABLE V
LOwW-FREQUENCY SIMULATION
Quasi-static Dynarmuc 2]

w/H Zo [ Zo [ Zo Eegy
1.0 51.15 6.425 51.22 6.426 51.21 6.566
1.5 41.49 6.660 41.60 6.663 40.43 6818
2.0 35.10 6.860 3533 6.868 34.45 7.018

TABLE VI
CURVILINEAR EFFECT AT LOW FREQUENCY

R Z, % Diff. €efr % Diff, k,
0.5 58.96 18.37 6.482 0.65 0.01
0.6 56.44 13.32 6.436 0.06 0.01
0.9 51.15 2.69 6.425 0.23 0.01
0.94 50.61 1.61 6.433 0.11 0.1
0.98 50.10 0.59 6.442 0.03 0.1
0.99 49.98 0.35 6.444 0.06 0.1

the characteristic impedance computation by the algorithm
for a metallic strip above a cylindrical conductor converges
to the result of the parallel-plate line as w/H >1 and
R —1. Although additional limiting casés may be consid-
ered, it is instructional at this point to present a few new
results in graphical form. Fig. 2 shows the quasi-static
behavior of €, and Z;, versus w/H for ¢,=9.6 and
R =028, 0.9, and 0.95, respectively. Superimposed on this
figure are data for the corresponding cases of microstrip
on a planar substrate [6]. The figure indicates clearly that
as R —1 the planar geometry is simulated with very high
accuracy.

B. Frequency-Dependent Simulation

The dynamic solution is compared with the quasi-static
case discussed in this article as well as with the results
presented in [8]. The substrate is assumed to have a
relative dielectric constant €, = 9.6, R =0.9, and k, = 0.01.
The condition k, <1 simulates the low-frequency limit.
Table V presents the comparison for w/H=1.0, 1.5, and
2.0, respectively, where w=238,p, and H=p,—p;. The
table indicates very good agreement between the dynamic
and quasi-static solutions presented here, while the results
in [2] are better than 2 percent higher in the evaluation of
€ett-

The manner in which the present algorithm approaches
these values is shown in Table VI for w/H =1.0. The
equivalent planar geometry in the quasi-static case yields
€o = 6.4403 and Z,=49.981 [6], where the circuit di-
mensions are matched for both geometries. This table
demonstrates that Z; is very sensitive to the value of R.
Fig. 3 shows the dispersive behavior of €., and Z, versus
kob for €,=9.6, R=09, and w/H=1.0, 1.5, and 2.0,
respectively. A few planar configuration points are also
shown for comparison (the circuit parameters of the planar
geometry are matched to the corresponding ones of micro-
strip on a cylindrical substrate). Fig. 4 is similar to Fig: 3
but for a RT-Duroid substrate with . = 2.32. Strong
dispersive behavior is observed for the higher dielectric
constant. Another interesting result is presented in Fig. 5,
where the capacitance per unit length of the microstrip line
normalized to the capacitance of the coaxial line is shown



848

Eeff

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL MTT-35.NO 9, SEPTEMBER 1987

Z (Ohm)

Effective
Dielectric
Constant

L 120

100

| 80

60

40

20

c (Ohm)

L 120

ioco

r 8o

60

[ 40

+ 20

0.0 Characteristic
Impedance
1.3
5.0 2.0
4
0.0 1.0 2.0 3.6 4.0 5.0 6.0 7.0
kob + Normal #ed frequency
Fig. 3. Frequency-dependent properties (alumina). ¢, = 9.6 and R = 0.9
Planar geometry. R =1.0[6].
Ceff z
6.0 -
N\
5.0 Wil = 1.0 Characteristic Impedance
4.0 //
3.0
3.0
30
2.0 4o A fom o T
Effective
1.0 Dielectric Constant
1.0
0.0 1.0 2.0 3.0 4.0 50 6.0 7.0
koh : Normalized fregquency.

Fig. 4 Frequency-dependent properties. ¢, =232 (RT/Duroid) and

R=009.
C, /C
6¢ 2n
1.0
2.32 /,
€ = 1.0 (Arr case ,
r //////
0.5 \ / \
/)X(:; g == (No fringing case
// 9.6
0.0 T T T

Fig. 5.

L

Normalized capacitance of the line. R=07.

2n

versus 8,. C;, approaches, as expected, the linear variation
(no fringing) as €, > 1. These curves (Fig. 5) may be used
to determine the effective width of the line.

VI

A highly accurate method has been developed for the
computation of the dynamic Green’s functions on a cir-
cularly symmetric cylindrical substrate. The method is
applied for the computation of the dispersive properties of
single microstrip line on a dielectric substrate. The solution
is obtained by applying the Galerkin method to the result-
ing integral equation for both the quasi-static and the
dispersive case. A closed-form solution is obtainable in the
same fashion for both cases. The efficiency of the solution
relies on the accurate computation of the Green’s function
on the substrate surface for both source and observation
points. For the cylindrical substrate geometry, this is
achieved by using the continued fraction representation of
the Bessel function of the first kind and recurrence repre-
sentation of the Bessel function of the second kind: these
are modified to compute the functions directly without
evaluating individual Bessel functions. The algorithm has
been verified for a variety of limiting cases with excellent
agreement. Finally, a useful stationary expression has been
derived for the characteristic impedance analytically, and
it has been shown that it yields at the limit the expression
of the characteristic impedance for the coaxial line.

CONCLUSIONS

APPENDIX

The dyadic Green’s function components in (21) are
obtained as

L ( N2 ) HY' (vop)  mk. ( Nfﬁ) H (100)
ad Y() Dm Hr(nZ)(‘YOPZ) kép Dm HIEIIZ)(.YOPZ)
(A1)
* Y() | Dm flr(;?)(‘YOpl) kép Dnz H;(;;Z)(‘YOPZ)
(A2)
o JYon [ N72Y HP (vop)
G:¢ = H® (A3)
kO Dm m (Y()P2)
g _ o [N HP (vop) (Ad)
Z: kg D, Hr(nZ)(YOPZ)
with
mk, k12
DIH=(XI?I_ef—xq.)/:f(ll))(xﬁl_ﬁ)]n(ZZ))_ (EI—]‘) -_S]
Y1 Y1 YoP2 Y1
(AS)
mk ,p
Nit=(e,=1)— (A6)
(v102)
v
NP = X, = T (A7)

Y1
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2
: mk
N2 = % Y,f,z)[Xm —€ EY,,(}) +(1- (,){-2—2} (A8)
Y1 1 NP2}
z Yo
N2=—|Y®-—X A9
pol -y, (49
and
Héz”‘(vopz)
P (A10)
H,; (Yon)
v = Nulnp) Jn(nez) = o (1101 N (1102) (A1)
" Na(vie) L (vie2) = 1, (101 N (110,)
yo - Yane) Li(nea) = 1y (ne) Np(nies) (AL2)
" N, (11p1) L, (v1p2) = 1 (v1P1) N, (v102)
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