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,4fMract —In this article, quasi-static and dynamic solutions are derived

for microdrip transmission lines on circularly symmetric cylindrical sub-

strates. Novel numerical techniques have evolved which lead to very

efficient algorithms. The model is applicable to substrates of arbitrary

thickness and cylinder size. Furthermore, it has been checked against a

variety of limiting cases, including microstrip on a flat substrate, and it has

been found to provide results with excellent accuracy. The analytical

extraction of the quasi-static behavior from the dynamic Green’s function

introduces considerable simplicity in developing the algorithm.

1. INTRODUCTION

T HE DESIGN OF microstrip antennas and microstrip

antenna arrays on cylindrically shaped substrates

necessitates the development of highly accurate design

procedures not only for the microstrip antennas, but also

for the microstrip circuitry which forms the antenna or

array excitation network. This article presents the develop-

ment of a dynamic model for a microstrip transmission

line printed on a circularly symmetric cylindrical substrate.

A quasi-static model has also been derived so as to provide

an investigation of the computational accuracy of the

dynamic Green’s function. It is determined that the al-

gorithm provides excellent accuracy and that it agrees with

all limiting cases, including the configuration of microstrip

on flat substrates. Quasi-static models for microstrip on

cylindrical substrates have been obtained previously with

good accuracy by conformal mapping [1], [2] and by

numerical solution to Laplace’s equation [3]. These models

however are useful for the computation of the static

parameters of the microstrip line, such as capacitance, and

they should not be used for the evaluation of the

frequency-dependent properties of such a complicated

waveguiding structure on a cylindrical substrate. The

quasi-static and dynamic solutions developed in this article

rely on the development of the Green’s function and the

solution of the pertinent integral equation by numerical

techniques such as the method of moments [4]-[7].

The most significant issue in the attempt to characterize

the microstrip transmission line on a cylindrical substrate

is the development of an accurate numerical procedure for

the computation of the pertinent Green’s function. Specifi-

cally, a breakthrough has been needed for some time now,
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which will lead to the calculation of the near fields gener-

ated by a printed current line source (two-dimensional

problem) or by a printed electric dipole (three-dimensional

problem) with the desired accuracy. This was achieved

recently for microstrip dipole antennas printed on a cylin-

drical substrate [8], [9]. There, a highly efficient algorithm

was developed which provides convergent numerical

evaluation of the pertinent Green’s function with the de-

sired accuracy. This algorithm has been modified to ad-

dress the two-dimensional (2-D) waveguiding problem of

the infinite microstrip line on a cylindrical substrate, i.e.,

the principal problem of concern in this article. To this

end, the Green’s function is derived for the quasi-static as

well as for the dynamic model, and the similarity of the

functional behavior of both Green’s functions is discussed

in detail. The algorithm is based on extracting the domi-

nant behavior of the Green’s function and on the judicious

use of recurrence relations and continued fraction repre-

sentations of the Bessel-type functions involved in the

problem. This algorithm is general so that it provides

highly accurate solutions for all conceivable limiting cases,

such as the static problem, arbitrarily thin or thick sub-

strate, and arbitrary cylinder size. Furthermore, it has been

checked against the planar microstrip configuration, two-

wire line, a wire above a planar conductor, and the paral-

lel-plate line, providing excellent agreement with each

limiting case.

H. THE QUASI-STATIC PROBLEM FORMULATION

The geometry of interest is shown in Fig. 1, which

depicts a cylindrical substrate with inner and outer radii PI

and pz, respectively, and relative dielectric constant E..

The width of the infinitely long microstrip line is denoted

as w = p28~, where 84 is the angular extent of the strip

defined in the figure. Thp Green’s function to the static

problem is obtained by considering as the source of poten-

tial an infinite line of unit charge at p = P2 and @= o’. The

Poisson equation

8(p–p2)
. . ,Xop 8(@-#) (1)
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Ai r Region : E
0

“{ 1 1

1+ 6rcoth(nzlog(l/R)) – (1+ 6,) }

(8)

In (8) the parameter A denotes the pulse expansion func-

tion width, while A, , is the sum
Substrate : c cro

Fig. 1. Cylindrical substrate microstnp configuration. R = PI /Pz.

The quantity A,, 1 may be cast into the following represen-

tation to facilitate computation:

is solved by substituting the Fourier series representation
+CO

[
A,,,=; YI–; (Y2+Y3) 1 (lo)

in (l). The boundary conditions are written in the spectral

domain as where ~ (i =1,2,3) is defined as

fW(~2jm)=~(o)(~=jm) (3) ‘m cos(mX, )
y“ ~ m3 (11)

Pn=land

withexp ( – jm+’)
~{@O)(p, m)-t,&)(p,m)}P= P,= - ZrP, ~
dp Xl=@,–@, X2= XI+A and X3= XI– A. (12)

(4) The form ~ may be computed by using Clausen’s integral

and related summation form [10], [11], i.e.,
ccThe Green’s function is readily obtained as

Y(X) =1.2020569+0.5X2 log(X) – ~ C,,X=” (13)
1

dP2!@)=-
{

~ log (1/R)
27rEo E,

?1=1

with c,, obtaining values such as those shown in Table I for

the first eight coefficients.
Cos [m(o – 0’)]‘2~~~1m[l+ trcoth(mlog (l/R))] )

(5)
III. DISPERSIVE MODEL

The dispersive model for the microstrip line shown in

Fig. 1 is obtained by using the spectral method to solve

Maxwell’s equations in the cylindrical coordinate system.

The electromagnetic field components are expressed in the

spectral domain as

where R = p ~/p2. The microstrip potential is related to the

charge density distribution per unit length p[( +) through

the integral equation

V.= v(+) =J’”’2do – +’)P,(+’) d+’. (6)
– 86/2 jkz dl?z

Eo=— —+q%l,
yz dp 7P

(14)

The Galerkin method is applied to solve the integral

equation for the unknown charge density by expressing

PI ( 4’) as a series Of pulse basis functions With unknown

coefficients aj. The integral equation is therefore reduced

to a system of algebraic equations in the form

(15)

mac,co .
Ilp=–

jkz dfi,
—---——Ez+— — (16)

Y2P y= dp

[y] = [-’%,,][a,l, i, J’=1,2,. ... N (7)
jaf~o aE, mk, -

H+=–—— – —Hz (17)
Y= ~P Y2Pwhere ~ = V. =1, and the matrix elements Z,,, are given
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where ~Z and Hz satisfy the wave equation found as

Here @”) represents ~~’) or fl~’) and y: = k: – k;, with

i =1, O denoting the substrate or free-space region, respec-

tively. The boundary conditions at p = pz yield

E(1) = fi:o)
z (19)

and

where H~ is given by

Hw =
J

~1 ‘*(YIP)
dp

P* Pfim(YlP2)
(30)

with parameters defined in the Appendix:

~rn(YIP) ‘N;(YIPl)Jrn(YIP) -4j4(YIP)Nm(YIP) (31)

( )-‘(l) _ ~:o) = J:fix H, (20)

where J; is the Fourier transform of J;= $Jo + 2JZ. The

unknown current density J-may be obtained by solving the

system

and q represents the free-space wave impedance. It is

interesting to note that at the quasi-static limit this expres-

sion reduces to
—

[$1=[%%1[:1 ’21)‘0=%
{

7(m)
.“ log(l/R)+2Er y

}~=1 m[l+ ~,coth(mlog(l/R))] ’32)for ~+ and ~ on the strip. The dynamic Green’s function

components G~~, Gg), G~~), and G~~) are given in the

Appendix, for convenience. Since we assume the strip to

be narrow (i.e., w<< A ~), J+ may be neglected [7]. Galer-

kin’s method is used to yield results for the effective

dielectric constant Ceff= (kZ /kO)*. The line characteristic

impedance is calculated by adopting the definition 20 =

Vo/lz, where 1= is the total longitudinal current on the

strip and V. is the potential difference of the strip to

ground. A stationary expression may be derived for Z. as

follows. The electric field component EP is given by

(22)E~l)(p, +) = ‘Em ~~l)exp (jmc+)
—m

where

(exp(jrn$), J,(+), exp(- @@’)) (33)
j(m) =

(JZ(@),l)

with ( ) denoting inner product. If pulse basis functions

are used as expansion functions with ‘width A, then

‘(m)=sinc(%)sinc’34)
n

~=1

where sine (x) = sin (x )/x, 8+ is the width of the line, and

a. are the unknown coefficients in the current expansion.

When the microstrip line is extended so that its width

80= 2T, the coaxial line i! obtained. For this case, C,ff =

c,, sinc(m6+/2) = O; i.e., l(m) = O and the expression for

the characteristic impedance reduces to the first term of

(32), i.e.,

where

Since the potential on the strip is given by

v(o)=~%$)(p,o)cip (24)
P2

if we define (35)

(25)

and IV. ALGORITHM DESCRIPTION

V(@) = ‘~m tiW.Z(m)exp(jmq5] (26)
—cc

An efficient algorithm can be developed by considering

an approach which bypasses the need to compute directly

Bessel-type functions for any order and/or argument. This

is achieved by computing equations (Al 1) and (A12) in the

Appendix. It is useful to note that these equations yield,

when properly combined, the term coth [ m log (1/R )] in

the quasi-static solution. Furthermore, it should be ob-

served that the wave equation reduces to Laplace’s equa-

tion when the argument of the Bessel-type functions in-

volved is small or the order is large. The development of

the algorithm becomes clearer by considering, as an exam-

ple, the manipulations introduced for the computation of

then application of Galerkin’s method to (26) will result in

Therefore 20 is

‘0= *~V.J(m)~(m) (28)
z —m

which is the stationary result. The expression for fi~ is
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Y(l) The expression for Y~\) may be written, by using the??1.
Wronskian and recursive relations, as

y(l) = y$~ – Ay:)
m

(36)

where

Jm+1(YlP2)
y;g .$.

-Jm(YlP2)

(37)

and

Jm(YIPl)/JHz(YlP2)
Ay# = 2

77Y1P2 ~m(YlPl)Jm(YlP2)– %( YlP2)Jm(YlPJ “

(38)

The asymptotic expression of (38) is derived as

2m
Ay~l) ~ —

y1p2 I–R”zm
(39)

where the combination of the first term in Y~~ and (39)

yields the corresponding quasi-static behavior of the func-

tion. Now, the dominant and perturbation terms are de-

fined as

and

[

1
7L*(Y1P1)ML(Y1P2)

~ ~;u = _2_

Y1P2 fv., (YlPl)L(YlP2) – ~m(YlP2)Jm(YlPl)

m
.

1

l_~-2m “
(41)

The dominant terms are computed by using the continued

fraction method, where only the ratio of Bessel’s functions

is required. The computation of the perturbation term is

performed by forming a new recurrence relation in the

following manner; when the ratios pm and qm are defined

as

Jm+l(z)

‘m= Jti(z)

and

Nt?2+l(z)
——

‘m= Nm(z)

then the recurrence relation is obtained as

with

~~1~= NO(A) JO(B)
o JO(A) NO(B)

(42a)

(42b)

(43)

(44)

and

Ay~lj =
{

P., (B)–9., (B) 2 m

}@-I ‘;l_R-2m “
(45)

Now the term Y~ll) is computed by using (40) and (45) as

where A = yl PI and B = y1p2. Here forward recurrence

applies to q~ ( z ) and G~l) while the continued fraction

relation applies to the Bessel function of the first kind. The

benefits of using these relations are: (a) one can determine

the accuracy for arbitrary order and argument (including

complex argument) explicitly, (b) subroutines for comput-

ing these functions can be coded very efficiently, and (c)

one needs to compute only zero-order Bessel functions to

calculate G$l) or a simple program may be written sep-

arately to achieve the same goal. The term defined in (45)

yields faster convergence; i.e., the quantities are much

smaller than the dominant term defined in (40).

V. NUMERICAL RESULTS

A variety of limiting cases is presented in this section to

demonstrate the accuracy and versatility of the developed

analysis and algorithm. The Galerkin procedure is applied

for the quasi-static as well as dynamic solutions, with pulse

basis functions being chosen as both expansion and testing

functions. The number of basis functions is chosen as 40

for half of the strip width and this leads to better than 0.5

percent convergence accuracy for both the quasi-static and

dynamic solutions.

A. Quasi-Static Simulation

The first three examples demonstrate how the cylindrical

solutions approach in the limit the two-wire transmission

line, the wire above a ground plane, and the parallel-plate

transmission line solutions. The characteristic impedance

for the quasi-static solution is obtained by using (7) or by

using the current distribution when c, approaches unity in

the dynamic solution.

1) Two-Wire Transmission Line: If c,= 1, R <<1, w/H
<<1, and p2 >> pl, the geometry approaches that of the

two-wire transmission line. The characteristic impedance

of such a line is given by Z. =120 cosh - l(D/a’), where D

is the distance between the wires and d is the diameter of

the wire. At the limit ZO -120 in (l/R) when R <<1 and

w/H <<1 with w = 4pl. Table II shows the manner in

which the microstrip above a cylinder approaches the

two-wire transmission line.

2) Strip Above a Planar Geometry: If c,= 1, wI/H <<1,

and R approaches unity, then the solution tends to that of

the strip above a ground plane. The characteristic imped-

ance for this geometry is given by the expression

‘o=601048(p2~p(47)

When w/H = 10”, this formula yields Z.= 677.4 Q. The

algorithm approaches the theoretical value, as shown in
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TABLE II
TWO-WIRE SIMULATION

TABLE V
LOW-FREQUENCYSIMULATION

R zlm Wo Wu-c ) Z) Oh is afgorirhm)
0.1 276.3 282.1
0.01 552.6
0.001

553.0
828.9 828.6

0.0001 1105.2 1105.2

TABLE III
WIRE ABOVEA GROUND PLANE

Quasj-static Dynasruc [2]
Wm m eff ZO cm 2.0 eff
1.0 51.15 6:425 51.22 6E426 51.21 6:66
1.5 41.49 6.660 41.60 6.663 40.43 6818
2.0 35.10 6.860 35,33 6.868 34.45 7.018

TABLE VI
CURVILINEAR EFFECTAT Low FREQUENCY

TABLE IV
PARALLEL-PLATESIMULATION

W&f ~ (Formula ) & (fvlOdel)
50 7.540 7.053

3.7iTl 3.637
;8 1.885 1.850
400 0.942 0.934
600 0.628 0.625

~eff ZC(Oh. )

I
8.0 .

7.0.

6.0

5.0

i

T

/’ Character, st. c

I

20
0.80 Impedance

t

10

0.0 1.0 2.0 3.0

“B = ‘500z ‘(o> - 01)

Fig. 2. Low-frequency properties (6,=9.6). Planar geometry. R= 1.0 [6].

Table III. The results obtained here reveal how the curved

surface affects the circuit parameters. When the circuit

dimension is small compared to the cylinder diameter, it

essentially simulates the planar geometry. This means that

the local field, defined as the field in the vicinity of the

circuit, dominates the transmission line properties inde-

pendent of frequency.

3) Parallel-Plate Line: When w/H>> 1, the geometry

approaches a parallel-plate line. For this type of line

ZO = 120 ~ (H/w). A comparison of the two cases is

shown in Table IV for R = 0.995. As the table indicates,

1
R

3
% % Jxff. eff % Diff. k

0.5 58.96 18.37 6.:82 0.65 0.01
0.6 56.44 13.32 6.436 0.06 0.01
0.9 51.15 2.69 6.425 0.23 0.01
0,94 50.61 1.61 6.433 0.11
0.98 50.10 0.59 6.442 0.03 $:
0.99 49.98 0.35 6.444 0.06 0.1

the characteristic impedance computation by the algorithm

for a metallic strip above a cylindrical conductor converges

to the result of the parallel-plate line as w/H>> 1 and

R -1. Although additional limiting cases may be consid-

ered, it is instructional at this point to present a few new

results in graphical form. Fig. 2 shows the quasi-static

behavior of C,ff and ZO versus w~H for c,= 9.6 and

R = 0.8, 0.9, and 0.95, respectively. Superimposed on this

figure are data for the corresponding cases of rnicrostrip

on a planar substrate [6]. The figure indicates clearly that

as R ~ 1 the planar geometry is simulated with very high

accuracy.

B. Frequency-Dependent Simulation

The dynamic solution is compared with the quasi-static

case discussed in this article as well as with the results

presented in [8]. The substrate is assumed to have a

relative dielectric constant c,= 9.6, R = 0.9, and kO = 0.01.

The condition kO <<1 simulates the low-frequency limit.

Table V presents the comparison for w/H= 1.0, 1.5, and

2.0, respectively, where w = 8+p2 and H= pz – pi. The

table indicates very good agreement between the dynamic

and quasi-static solutions presented here, while the results

in [2] are better than 2 percent higher in the evaluation of

ceff.
The manner in which the present algorithm approaches

these values is shown in Table VI for w/H= 1.0. The

equivalent planar geometry in the quasi-static case yields

Ceff = 6.4403 and ZO = 49.981 [6], where the circuit di-

mensions are matched for both geometries. This table

demonstrates that 20 is very sensitive to the value of R.

Fig. 3 shows the dispersive behavior of ceff and ZO versus

kob for c,= 9.6, R = 0.9, and w/H= 1.0, 1.5, and 2.0,

respectively. A few planar configuration points are also

shown for comparison (the circuit parameters of the planar

geometry are matched to the corresponding ones of micro-

strip on a cylindrical substrate). Fig. 4 is similar to Fig; 3

but for a RT-Duroid substrate with C,ff = 2.32. Strong

dispersive behavior is observed for the higher dielectric

constant. Another interesting result is presented in Fig. 5,

where the capacitance per unit length of the microstrip line

normalized to the capacitance of the coaxial line is shown
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versus 8+. C8+ approaches, as expected, the linear variation

(no fringing) as t,>> 1. These curves (Fig. 5) maybe used
to determine the effective width of the line.

VI. CONCLUSIONS

A highly accurate method has been developed for the

computation of the dynamic Green’s functions on a cir-

cularly symmetric cylindrical substrate. The method is

applied for the computation of the dispersive properties of

single microstrip line on a dielectric substrate. The solution

is obtained by applying the Galerkin method to the result-

ing integral equation for both the quasi-static and the

dispersive case. A closed-form solution is obtainable in the

same fashion for both cases. The efficiency of the solution

E.ff
z (ohm)

I
10.6

9.(1

S.c

7.0

6.0

5,0

I t
120

Effectxve

100
---d-----,/1{ = 2.0 _-- —-

----
,-- ----

!/

,/- --- ---–- *O
/--”’ /, ----

,/- ,,-
..- --- f+.”’

2.0
1.5 120

I relies on the accurate computation of the Green’s function

on the substrate surface for both source and observation~“
0.0 1.0 2.0 3.G 4.0 5.0 6.0 7.0

kotj N.rmal*ed frequency

Fig. 3. Frequency-dependent properties (alumina). t, = 9.6 and R = 0.9
Planar geometg. R = 1.0 [6].

points. For the cylindrical substrate geometry, this is

achieved by using the continued fraction representation of

the Bessel function of the first kind and recurrence repre-

sentation of the Bessel function of the second kind: these

are modified to compute the functions directly without

‘eff
Zc (Ohm) evaluating individual Bessel functions. The algorithm has

been verified for a variety of limiting cases with excellent

agreement. Finally, a useful stationary expression has been

derived for the characteristic impedance analytically, and

it has been shown that it yields at the limit the expression

of the characteristic impedance for the coaxial line.

.120

6.0 .100
$,

5.0

7,)

Character lst, c Impedancewft[ = 1.0 80

/
4.0 60

3.0
3.0 40

2,0 .___–_—–— ——L-::-----4---------IZZ:I:: .2,~_______ —-_..-—---———__ —-_- _.-— ——

Effect. ve
1.(I Dlelectrlc constant

1.0 0

0.0 1.0 2,0 3.0 &.o 50 6.0 7.0

kob : Norma lIzt’d frequency.

Fig. 4 Frequency-dependent properties. c, = 2.32 (RT/Duroid)
R = 0.9.

APPENDIX

The dyadic Green’s function components in (21) are

obtained as

(A2)
and

[)jyoq N.~2 H(2)( yop )
G;:) . — _

kO Dm Ii ( YOP2 )

()

jYoq ~;2 ~A2) (YOP)
G;;) . — _

k. Dm W2) ( YI.IP2 )

(A3)

c6*/c2n

1.0

0.5

0.0

r ////<7 ,/’
=1.0 (A., case‘r /“\/\ /’

k-” = - (No fr,mg.mg case‘r

9.6

/“

./”

i / 4

(A4)

with

(A5)y,.” \ -
I

mkzp2
N;l= (~, –1)—

(Y,P2)2

NII=X –~y$)
m m

Y1

(A6)

(A7)0 . 2.

Fig, 5. Normalized capacitance of the line. R = 07.
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and

~:2)’ (YOP2)

‘m= Hj,) ( yop2 )

Nm(ylpl)J;(YlP2 )–Jm(YlPl)~L(YlP2)
‘Jl) =

Nm(y1pl)Jm(YlP2 )–Jm(YlP1)~m(YlP2)

(A8)

(A9)

(A1O)

(All)

N;(YIPI)JJ(Y1P2) – JJ(YlPl)~i(YlP2)
yj2) = (A12)

~J(YlPl)Jm(YlP2)– JL(Y1P1)%(Y1P2) “
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